Hướng dẫn giải bài §3. Đạo hàm của hàm con số giác, Chương V. Đạo hàm, sách giáo khoa Đại số và Giải tích 11. Nội dung bài xích giải bài bác 1 2 3 4 5 6 7 8 trang 168 169 sgk Đại số và Giải tích 11 bao gồm tổng đúng theo công thức, lý thuyết, cách thức giải bài bác tập đại số cùng giải tích bao gồm trong SGK sẽ giúp đỡ các em học viên học giỏi môn toán lớp 11.

Bạn đang xem: Bài 3 trang 168 toán 11


Lý thuyết

1. Đạo hàm của hàm số $y = sinx$

Hàm số (y=sin x) gồm đạo hàm tại số đông (x in mathbbR) với (left( sin x ight)’ = cos x.)

Nếu (y=sin u) và (u=u(x)) thì ((sin u)’=u’. cos u.)

2. Đạo hàm của hàm số $y = cosx$

Hàm số (y=cos x) gồm đạo hàm tại hầu hết (x in mathbbR) cùng (left( cos x ight)’ =-sin x.)

Nếu (y=cos u) cùng (u=u(x)) thì ((cos u)’=-u’. sin u.)

3. Đạo hàm của hàm số $y = tanx$

Hàm số (y= an x) bao gồm đạo hàm tại hầu hết (x e fracpi 2 + kpi ,k in mathbbR) và (left( an x ight)’ = frac1cos ^2x.)

Nếu (y=tan u) và (u=u(x)) thì (left( an u ight)’ = fracu’cos ^2u.)

4. Đạo hàm của hàm số $y = cotx$

Hàm số (y=cot x) có đạo hàm tại những (x e kpi ,k in mathbbR) với (left( cot x ight)’ = – frac1sin ^2x.)

Nếu (y=cot u) cùng (u=u(x)) thì (left( cot x ight)’ = – fracu’sin ^2u).

Bảng đạo hàm:


*

Dưới đây là phần phía dẫn trả lời các câu hỏi và bài bác tập trong phần hoạt động của học sinh sgk Đại số và Giải tích 11.

Câu hỏi

1. Trả lời câu hỏi 1 trang 163 sgk Đại số cùng Giải tích 11


Tính (sin 0,01 over 0,01;,,sin ,0,001 over 0,001) bằng máy tính xách tay bỏ túi.

Trả lời:

Ta có:

(eqalign& sin 0,01 over 0,01 approx 0,999983 cr& sin ,0,001 over 0,001 approx 0,99999983 cr )

2. Trả lời câu hỏi 2 trang 165 sgk Đại số và Giải tích 11

Tính đạo hàm của hàm số: (y = sin (pi over 2 – x))

Trả lời:

$y’ = (sin⁡ (pi over 2 – x) )’$


Đặt $u = pi over 2 – x$ thì $u’ = -1$

⇒ $y’ = u’ cos⁡u = -1 cos⁡(pi over 2 – x) = -sin⁡x$

(do $cos⁡(pi over 2 – x) = sin⁡x$ ).

3. Trả lời thắc mắc 3 trang 166 sgk Đại số với Giải tích 11

Tính đạo hàm của hàm số:

(f(x) = sin ,x over cos ,x,(x e pi over 2 + kpi ;,k in Z))

Trả lời:


Ta có:

(eqalign& f"(x) = (sin ,x over cos ,x) ‘= (sin ,x)’cos ,x – sin ,x.(cos ,x)’ over cos ,^2x cr& = cos ,^2x + sin ^2x over cos ,^2x = 1 over cos ,^2x cr )

4. Trả lời thắc mắc 4 trang 167 sgk Đại số và Giải tích 11

Tính đạo hàm của hàm số:

$y = tung (pi over 2 – x)$ cùng với $x ≠ kπ, k ∈ Z$

Trả lời:

Đặt $u = pi over 2 – x$ thì $u’ = -1$


⇒ $y’ = u’ over cos ^2u = – 1 over cos ^2u $

$= – 1 over cos ^2(pi over 2 – x) = – 1 over sin ^2x$

(do $cos⁡(pi over 2 – x) = sin⁡x$)

Dưới đó là phần lí giải giải bài bác 1 2 3 4 5 6 7 8 trang 168 169 sgk Đại số và Giải tích 11. Chúng ta hãy phát âm kỹ đầu bài trước khi giải nhé!

Bài tập

jenincity.com trình làng với các bạn đầy đủ cách thức giải bài bác tập đại số với giải tích 11 kèm bài xích giải đưa ra tiết bài 1 2 3 4 5 6 7 8 trang 168 169 sgk Đại số cùng Giải tích 11 của bài bác §3. Đạo hàm của hàm con số giác vào Chương V. Đạo hàm cho các bạn tham khảo. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:

*
Giải bài bác 1 2 3 4 5 6 7 8 trang 168 169 sgk Đại số với Giải tích 11

1. Giải bài bác 1 trang 168 sgk Đại số cùng Giải tích 11

Tìm đạo hàm của những hàm số sau:


a) (y = fracx-15x-2)

b) (y = frac2x+37-3x)

c) (y = fracx^2+2x+33-4x)

d) (y = fracx^2+7x+3x^2-3x)

Bài giải:

a) (y = fracx-15x-2)

( y’=fracleft ( x-1 ight )’.left ( 5x-2 ight )-left ( x-1 ight ).left ( 5x-2 ight )’left ( 5x-2 ight )^2)

(y’ =frac(5x-2)-left ( x-1 ight ).5left ( 5x-2 ight )^2)

(y’ =frac3left ( 5x-2 ight )^2).

b) (y = frac2x+37-3x)

( y’=fracleft ( 2x+3 ight )’.left ( 7-3x ight )-left ( 2x+3 ight ).left ( 7-3x ight )’left ( 7-3x ight )^2)

(y’= frac2left ( 7-3x ight )-left ( 2x+3 ight ).left ( -3 ight )left ( 7-3x ight )^2)

(y’= frac23left ( 7-3x ight )^2).

c) (y = fracx^2+2x+33-4x)

( y’=fracleft ( x^2+2x+3 ight )’.left ( 3-4x ight )-left ( x^2 +2x+3 ight ).left ( 3-4x ight )’left ( 3-4x ight )^2)

(y’= fracleft ( 2x+2 ight ).left ( 3-4x ight )-left ( x^2+2x+3 ight ).(-4)(3-4x)^2)

(y’ =frac-2(2x^2-3x-9)(3-4x)^2).

d) (y = fracx^2+7x+3x^2-3x)

( y’=frac(x^2+7x+3)’.(x^2-3x)-(x^2+7x+3).(x^2-3x)’(x^2-3x)^2)

(y’ =frac(2x-7).(x^2-3x)-(x^2+7x+3).(2x-3)(x^2-3x)^2)

(y’=frac-10x^2-6x+9(x^2-3x)^2).

2. Giải bài 2 trang 168 sgk Đại số và Giải tích 11

Giải những bất phương trình sau:

a) (y"0) cùng với (y = frac2x-1x^2+x+4)

Bài giải:

a) (y"x le – 3 hfill cr} ight. hfill cr} ight.)

(Leftrightarrow left< matrixx ge 1 hfill cr x le – 3 hfill cr ight.)

(Rightarrow x∈ (-∞;-3> ∪ <1;+∞))

Vậy (x∈ (-∞;-3> ∪ <1;+∞))

c) (y’>0) với (y = frac2x-1x^2+x+4)

Ta có (y’=frac(2x-1)’.(x^2+x+4)-(2x-1).(x^2+x+4)’(x^2+x+4)=frac-2x^2+2x+9(x^2+x+4)).

Vì (x^2+x +4 =left ( x+frac12 ight )^2+ frac154 >0), với (∀ x ∈ mathbb R)

(Rightarrow y’>0 Leftrightarrow frac-2x^2+2x+9(x^2+x+4) >0)

(Leftrightarrow -2x^2+2x +9>0 )

(Leftrightarrow frac1-sqrt192

3. Giải bài bác 3 trang 169 sgk Đại số cùng Giải tích 11

Tìm đạo hàm của những hàm số sau:

a) (y = 5sinx -3cosx)

b) ( y=fracsinx+cosxsinx-cosx)

c) (y = x cotx)

d) (y = fracsinxx+fracxsinx)

e) (y = sqrt(1 +2tan x))

f) (y = sinsqrt(1 +x^2))

Bài giải:

a) (y = 5sinx -3cosx)

(y’=5cosx-3(-sinx)=5cosx+3sinx)

b) ( y=fracsinx+cosxsinx-cosx)

(y’=(sinx+cos x)’.(sin x- cos x)-(sin x+cos x)(sin x-cos x)’over(sin x-cos x)^2)

(y’= (cos x-sin x)(sin x -cos x)-(sin x+ cos x)(cosx+sinx)over(sin x-cosx )^2)

(y’ =-2over(sin x-cos x)^2)

c) (y = x cotx)

(y’ = cotx +x. left ( -frac1sin^2x ight )= cotx – fracxsin^2x).

d) (y = fracsinxx+ fracxsinx)

( y’=frac(sin x)’.x-sin x.(x)’x^2+frac(x)’.sin x-x(sin x)’sin^2x)

(y’= fracx.cosx-sinxx^2+fracsin x-x.cosxsin^2x)

(y’= fracx.cosx-sinxx^2-fracx.cosx-sin xsin^2x)

(y’ = (x. Cosx -sinx) left ( frac1x^2-frac1sin^2x ight )).

e) (y = sqrt(1 +2tan x))

( y’=frac(1+2tanx)’2sqrt1+2tanx)

(y’= fracfrac2cos^2x2sqrt1+2tanx)

(y’=frac1cos^2xsqrt1+2tanx).

f) (y = sinsqrt(1 +x^2))

(y’ = (sqrt1+x^2)’ cossqrt(1+x^2) )

(y’= frac(1+x^2)’2sqrt1+x^2cossqrt(1+x^2) )

(y’= frac2x2sqrt1+x^2cossqrt(1+x^2) )

(y’= fracxsqrt1+x^2cossqrt(1+x^2))

4. Giải bài bác 4 trang 169 sgk Đại số cùng Giải tích 11

Tìm đạo hàm của các hàm số sau:

a) (y = left( 9 – 2x ight)(2x^3 – 9x^2 + 1))

b) (y = left ( 6sqrtx -frac1x^2 ight )(7x -3))

c) (y = (x -2)sqrt(x^2+1))

d) (y = tan^2x +cotx^2)

e) (y = cosfracx1+x)

Bài giải:

a) (y = left( 9 – 2x ight)(2x^3 – 9x^2 + 1))

(y’ = left( 9 – 2x ight)"(2x^3 – 9x^2 + 1) + left( 9 – 2x ight)(2x^3 – 9x^2 + 1)’)

(y’= – 2(2x^3 – 9x^2 + 1) + left( 9 – 2x ight)(6x^2 – 18x) )

(y’=-4x^3+18x^2-2+54x^2-162x-12x^3+36x^2)

(y’= – 16x^3 + 108x^2 – 162x – 2).

b) (y = left ( 6sqrtx -frac1x^2 ight )(7x -3))

(y’ = left ( 6sqrtx -frac1x^2 ight )’.(7x -3) +left ( 6sqrtx -frac1x^2 ight )(7x -3)’)

(y’= left ( frac3sqrtx +frac2x^3 ight )(7x -3) +7 left ( 6sqrtx -frac1x^2 ight ))

(y’=63sqrtx-frac9sqrtx+frac7x^2-frac6x^3)

c) (y = (x -2)sqrt(x^2+1))

(y’ = (x -2)’sqrt(x^2+1) + (x -2)sqrt (x^2+1)’ )

(y’= sqrt (x^2+1) + (x -2)fracleft ( x^2+1 ight )’2sqrtx^2+1)

(y’= sqrt (x^2+1) + (x -2) frac2x2sqrtx^2+1)

(y’ = sqrt (x^2+1) + fracx^2-2xsqrtx^2+1)

(y’= frac2x^2-2x+1sqrtx^2+1).

d) (y = tan^2x +cotx^2)

(y’ = 2tanx.(tanx)’ – (x^2)’ left ( -frac1sin^2x^2 ight )= frac2tanxcos^2x+frac2xsin^2x^2)

e) (y = cosfracx1+x)

(y’ = left ( frac11+x ight )’sin fracx1+x= -frac1(1+x)^2sin fracx1+x).

5. Giải bài bác 5 trang 169 sgk Đại số và Giải tích 11

Tính ( fracf"(1)varphi ‘(1)), hiểu được (f(x) = x^2) với (φ(x) = 4x +sin fracpi x2)

Bài giải:

Ta có:

(f"(x) = 2xRightarrow f"(1) = 2)

(φ"(x) = 4 + left ( fracpi x2 ight )’. Cos fracpi x2 = 4 + fracpi 2. Cos fracpi x2)

(Rightarrow φ"(1) = 4).

(Rightarrow fracf"(1)varphi ‘(1) = frac24= frac12)

6. Giải bài bác 6 trang 169 sgk Đại số với Giải tích 11

Chứng minh rằng các hàm số sau bao gồm đạo hàm không phụ thuộc vào (x):

a) (sin^6x + cos^6x + 3sin^2x.cos^2x)

b) (cos ^2left ( fracpi 3-x ight )+ cos ^2 left ( fracpi 3+x ight ) + cos ^2left ( frac2pi 3-x ight )+cos ^2 left ( frac2pi 3+x ight )-2sin^2x)

Bài giải:

a) (sin^6x + cos^6x + 3sin^2x.cos^2x)

Ta có:

((3sin^2x.cos^2x)’=3.(sin^2x)’.cos^2x+3.sin^2x(cos^2x)’)

(=3.cos^2x.2.sin x (sin x)’+3.sin^2x.2.cos x.(cosx)’)

(=6.cos^2x.sin x.cos x+6.sin^2x.cos x.(-sin x))

(=6.cos^3x.sin x-6.sin^3x.cos x)

(y’ = 6sin ^5x.cos x – 6cos ^5x.sin x + 6sin x.cos^3x – 6sin ^3x.cos x)

(= 6sin ^3x.cos x(sin^2 x – 1) + 6sin x.cos^3 x(1 – cos ^2x))

(= 6sin ^3x.cos x.cos^2x + 6sin x.cos^3 x.sin^2x)

(= – 6sin ^3x.cos^3 x + 6sin ^3x.cos^3 x = 0).

Vậy (y’ = 0)với đông đảo (x),tức là (y’) không phụ thuộc vào vào (x).

b) (cos ^2left ( fracpi 3-x ight )+ cos ^2 left ( fracpi 3+x ight ) + cos ^2left ( frac2pi 3-x ight )+cos ^2 left ( frac2pi 3+x ight )-2sin^2x)

(y’ = 2cos left ( fracpi 3-x ight ).sin left ( fracpi 3-x ight ))

( -2cos left ( fracpi 3+x ight ).sin left ( fracpi 3+x ight ))

( +2cos left ( frac2 pi 3-x ight ).sin left ( frac2 pi 3-x ight ))

( -2cos left ( frac2 pi 3+x ight ).sin left ( frac2 pi 3+x ight )-4sin,xcos,x)

Áp dụng công thức tính đạo hàm của hàm số đúng theo ta được

(y’ =sin left ( frac2pi 3-2x ight ) – sin left ( frac2pi 3+2x ight )+ sin left ( frac4pi 3-2x ight ) – sin left ( frac4pi 3+2x ight )- 2sin 2x )

(= -2cos frac2pi 3.sin,2x – 2cos frac4pi 3. sin 2x – 2sin 2x )

(= sin 2x + sin 2x – 2sin 2x )

(=sin,2x(1+1-2)=0)

Vậy (y’ = 0) với đa số (x), cho nên (y’) không nhờ vào vào (x).

7. Giải bài 7 trang 169 sgk Đại số cùng Giải tích 11

Giải phương trình (f"(x) = 0), biết rằng:

a) (f(x) = 3cos x + 4sin x + 5x)

b) (f(x) = 1 – sin(π + x) + 2cos left ( frac2pi +x2 ight ))

Bài giải:

a) (f(x) = 3cos x + 4sin x + 5x)

(f"(x) = – 3sin x + 4cos x + 5).

(Rightarrow f"(x) = 0 Leftrightarrow – 3sin x + 4cos x + 5 = 0)

(Leftrightarrow3 sin x – 4cos x = 5)

(Leftrightarrow frac35sin x – frac45 cos x = 1).(*)

Đặt (cos alpha = frac35,left(alpha ∈ left ( 0;fracpi 2 ight ) ight ) Rightarrow sin alpha = frac45)

Ta có:

(*)(Leftrightarrow sin x.cos alpha – cos x.sin alpha = 1)

(Leftrightarrow sin(x – alpha ) = 1)

(Leftrightarrow x – alpha = fracpi 2 + k2π)

(Leftrightarrow x = alpha + fracpi 2 + k2π, k ∈ mathbb Z).

Vậy (x = alpha + fracpi 2 + k2π, k ∈ mathbb Z)

b) (f(x) = 1 – sin(π + x) + 2cos left ( frac2pi +x2 ight ))

(f"(x) = – cos(π + x) – sin left (pi + fracx2 ight ) = cos x + sin fracx 2)

(f"(x) = 0 Leftrightarrow cos x + sin fracx 2 = 0 )

(Leftrightarrow sin fracx 2 = – cosx)

(Leftrightarrow sin fracx 2 = sin left (x-fracpi2 ight ))

(Leftrightarrow left< matrixfracx 2= x-fracpi2+ k2π hfill cr fracx 2 = π – x+fracpi2+ k2π hfill cr ight.)

(Leftrightarrow left< matrixx = π – k4π hfill cr x = π + k frac4pi 3 hfill cr ight.(k ∈ mathbb Z))

Vậy (x = π – k4π)hoặc (x = π + k frac4pi 3(k ∈ mathbb Z))

8. Giải bài bác 8 trang 169 sgk Đại số cùng Giải tích 11

Giải bất phương trình (f"(x) > g"(x)), biết rằng:

a) (f(x) = x^3+ x – sqrt2,g(x) = 3x^2+ x + sqrt2)

b) (f(x) = 2x^3- x^2+ sqrt3,g(x) = x^3+ fracx^22 – sqrt 3)

Bài giải:

a) (f(x) = x^3+ x – sqrt2,g(x) = 3x^2+ x + sqrt2)

Ta có (f"(x) = 3x^2+ 1), (g"(x) = 6x + 1).

(Rightarrow f"(x) > g"(x) )

(Rightarrow 3x^2+ 1 > 6x + 1 )

(Leftrightarrow 3x^2- 6x >0)

(Leftrightarrow 3x(x – 2) > 0 )

(Leftrightarrow x > 2)hoặc (x > 0)

Vậy (x ∈ (-∞;0) ∪ (2;+∞)).

Xem thêm: Cộng Số Đo Thời Gian Toán Lớp 5, Toán Lớp 5 Trang 132 Cộng Số Đo Thời Gian

b) (f(x) = 2x^3- x^2+ sqrt3,g(x) = x^3+ fracx^22 – sqrt 3)

Ta gồm (f"(x) = 6x^2- 2x), (g"(x) = 3x^2+ x).

(Rightarrow f"(x) > g"(x))

(Leftrightarrow 6x^2- 2x > 3x^2+ x )

(Leftrightarrow 3x^2- 3x > 0)

(Leftrightarrow 3x(x – 1) > 0 )

(Leftrightarrow x > 1)hoặc (x

Bài trước:

Bài tiếp theo:

Chúc chúng ta làm bài giỏi cùng giải bài bác tập sgk toán lớp 11 với giải bài xích 1 2 3 4 5 6 7 8 trang 168 169 sgk Đại số với Giải tích 11!